

RNTHAACHE

Benchmark of GANs for Fast HEP Calorimeter Simulations

GRID 2021

Florian Rehm [CERN openlab, RWTH Aachen]

Sofia Vallecorsa [CERN openlab], Kerstin Borras [DESY, RWTH Aachen], Dirk Krücker [DESY]

06.07.2021

Calorimeter Simulations

- Calorimeter detectors measure the energy of particles
- Calorimeter simulations are based on Geant4
- Simulations use about 50% of the resources of the worldwide LHC grid
- LHC high luminosity phase requires 100 times more simulated data *
- → Develop a new approach which occupies less resources
- → Employ deep learning

*A Roadmap for HEP Software and Computing R&D for the 2020s https://doi.org/10.1007/s41781-018-0018-8

Generative Adversarial Networks

3DGAN

• Train two networks (Generator & Discriminator) in a minmax game

- 200000 3D shower images with granularity 25x25x25
- Energies between 2-500 GeV

New Conv2D Generator Architecture

- Conv3D layers are computational demanding
- Conv3D layers are not yet supported in less than 32bit precision
 - → Creating neural network consisting only of Conv2D layers
 - → New Conv2D architectures

 \rightarrow Solve 3D image problems with only 2D convolutional layers

New Conv2D Model Evaluation

Computational Evaluation 1

Conv2D Model Inference

 Geant4 takes 17s to reproduce 1 shower *

 Conv2D model 158000x faster

- GPU: Nvidia Tesla V100
- Optimized for reaching highest inference times

*Geant4 simulation time from a previous measurement in 2018: Book title: "High Performance Computing", Springer, Chapter: "Distributed Training of Generative Adversarial Networks for Fast Detector Simulation"

Computational Evaluation 2

Comparison Conv2D vs Conv3D

Model	Number of Parameters	Speed up vs Geant4	GPU Utilization
Conv3D	752 000	6 200x (not optimized)	78.75%
Conv2D	2 055 000	158 000x	98.50%

- Inference of Conv2D model is faster
 - However, Conv3D inference not optimized for batch size on GPU
- New Conv2D model has more than double as much parameters as the previous Conv3D model
 - \rightarrow Potential for reaching higher physics accuracy

Shower Shapes

• Cell wise the Mean Squared Error (MSE) between GAN and validation data along the three canonical axes:

Model	MSE (Lower is better)	-
Conv3D	0.065	
Conv2D	0.027 🗸	

• Projection of the shower along the different axes

openlab

 Conv2D performs better along the tails

Deposited Mean Energy

- Deposited energy with respect to the incident electron energy
- μ₉₀: 90% core of the distributions
- → Conv2D model performs better for lower energies

Reduced Precision Computing

Reduced Precision Computing

• Quantization: Converting a number from a higher to a lower format

• E.g. from float32 to int8

Computational Evaluation

(of iLoT model)

• 1.8x speed up due to quantization

Test run on CPU: Intel 2S Xeon Processor 8280 with Cascade Lake architecture and 28 cores (56 virtual cores or threads)

 Total speed up of 68000x versus Geant4

Model	Speedup vs Geant4
float32	38000x
int8	68 000x

 Reduction in model memory size of 2.26x

Model	Memory [MB]
float32	8.08
int8	3.57

cern openlab

Shower Shapes

Mean Squared Error (MSE)
between GAN and validation data

Model	MSE (Lower is better)	+
float32	0.061	
iLoT int8	0.053 🗸	
TFLite float16	0.253	
TFLite int8	0.340	

- iLoT shows a good accuracy
- TensorFlow Lite performs worse

- New Conv2D architecture:
 - ✓ 158000x speed up vs recent Geant4 simulations
 - ✓ Better physics accuracy than previous Conv3D model
- Quantized iLoT int8 model:
 - ✓ Further **1.8x** speed up
 - ✓ Keeping good physics accuracy

QUESTIONS?

Benchmark of GANs for Fast HEP Calorimeter Simulations

Florian Rehm [CERN openlab, RWTH Aachen]

Sofia Vallecorsa [CERN openlab], Kerstin Borras [DESY, RWTH Aachen], Dirk Krücker [DESY]

Back Up Slides

Florian Rehm - GRID 2021

16

Histogram of Single Cell Energy Deposition

- Conv2D model performs slightly worse for lower energy cells
- \rightarrow Further investigations
- Minimal energy threshold at 10⁻⁶ GeV because of detector resolution
- Practice: 10⁻⁶ GeV energy threshold

Number of Hits

- Number of hits:
 - "How many cells receive energy above a certain threshold"
- Primary particle energies of 50, 200 and 500 GeV
 - Averaging the distributions over ± 2 GeV bins

→ Both models show a good performance

Florian Rehm - GRID 2021

SSIM

Structural Similarity Index

- Known problem of GANs: Mode collapse
- SSIM estimates the perceptual difference between similar images

 \rightarrow Conv2D performes better

